Хеширование. Что такое Хэш или Хэширование? «Хеш-функции», основанные на умножении

Хеширование

Хеширование (иногда «хэширование» , англ. hashing ) - преобразование по детерменированному алгоритму входного массива данных произвольной длины в выходную битовую строку фиксированной длины. Такие преобразования также называются хеш-функциями или функциями свёртки , а их результаты называют хешем , хеш-кодом или сводкой сообщения (англ. message digest ). Если у двух строк хеш-коды разные, строки гарантированно различаются, если одинаковые - строки, вероятно, совпадают.

Хеширование применяется для построения ассоциативных массивов , поиска дубликатов в сериях наборов данных, построения достаточно уникальных идентификаторов для наборов данных, контрольное суммирование с целью обнаружения случайных или намеренных ошибок при хранении или передаче, для хранения паролей в системах защиты (в этом случае доступ к области памяти, где находятся пароли, не позволяет восстановить сам пароль), при выработке электронной подписи (на практике часто подписывается не само сообщение, а его хеш-образ).

В общем случае однозначного соответствия между исходными данными и хеш-кодом нет в силу того, что количество значений хеш-функций меньше , чем вариантов входного массива; существует множество массивов с разным содержимым, но дающих одинаковые хеш-коды - так называемые коллизии . Вероятность возникновения коллизий играет немаловажную роль в оценке качества хеш-функций.

Существует множество алгоритмов хеширования с различными свойствами (разрядность , вычислительная сложность , криптостойкость и т. п.). Выбор той или иной хеш-функции определяется спецификой решаемой задачи. Простейшими примерами хеш-функций могут служить контрольная сумма или CRC .

История

Первой серьёзной работой, связанной с поиском в больших файлах, была статья Уэсли Питерсона (англ. W. Wesley Peterson ) в IBM Journal of Research and Development 1957 года, в которой он определил открытую адресацию, а также указал на ухудшение производительности при удалении. Спустя шесть лет был опубликована работа Вернера Бухгольца (нем. Werner Buchholz ), в которой проведено обширное исследование хеш-функций. В течение нескольких последующих лет хеширование широко использовалось, однако не было опубликовано никаких значимых работ.

В 1967 году хеширование в современном значении упомянуто в книге Херберта Хеллермана «Принципы цифровых вычислительных систем» . В 1968 году Роберт Моррис (англ. Robert Morris ) опубликовал в Communications of the ACM большой обзор по хешированию, эта работа считается ключевой публикацией, вводящей понятие о хешировании в научный оборот и закрепившей ранее применявшийся только в жаргоне специалистов термин «хеш».

До начала 1990-х годов в русскоязычной литературе в качестве эквивалента термину «хеширование» благодаря работам Андрея Ершова использовалось слово «расстановка» , а для коллизий использовался термин "конфликт" (Ершов использовал «расстановку» с 1956 года, в русскоязычном издании книги Вирта «Алгоритмы и структуры данных» 1989 года также используется термин «расстановка»). Предлагалось также назвать метод русским словом «окрошка» . Однако ни один из этих вариантов не прижился, и в русскоязычной литературе используется преимущественно термин «хеширование».

Виды хеш-функций

Хорошая хеш-функция должна удовлетворять двум свойствам:

  1. Быстро вычисляться;
  2. Минимизировать количество коллизий

Предположим, для определённости, что количество ключей , а хеш-функция имеет не более различных значений:

В качестве примера «плохой» хеш-функции можно привести функцию с , которая десятизначному натуральном числу сопоставляет три цифры выбранные из середины двадцатизначного квадрата числа . Казалось бы значения хеш-кодов должны равномерно распределиться между «000» и «999», но для реальных данных такой метод подходит лишь в том случае, если ключи не имеют большого количества нулей слева или справа.

Однако существует несколько более простых и надежных методов, на которых базируются многие хеш-функции.

Хеш-функции основанные на делении

Первый метод заключается в том, что мы используем в качестве хеша остаток от деления на , где это количество всех возможных хешей:

При этом очевидно, что при чётном значение функции будет чётным, при чётном , и нечётным - при нечётном, что может привести к значительному смещению данных в файлах. Также не следует использовать в качестве степень основания счисления компьютера, так как хеш-код будет зависеть только от нескольких цифр числа , расположенных справа, что приведет к большому количеству коллизий. На практике обычно выбирают простое - в большинстве случаев этот выбор вполне удовлетворителен.

Ещё следует сказать о методе хеширования, основанном на делении на полином по модулю два. В данном методе также должна являться степенью двойки, а бинарные ключи () представляются в виде полиномов. В этом случае в качестве хеш-кода берутся значения коэффциентов полинома, полученного как остаток от деления на заранее выбранный полином степени :

При правильном выборе такой способ гарантирует отсутствие коллизий между почти одинаковыми ключами.

Мультипликативная схема хеширования

Второй метод состоит в выборе некоторой целой константы , взаимно простой с , где - количество представимых машинным словом значений (в компьютерах IBM PC ). Тогда можем взять хеш-функцию вида:

В этом случае, на компьютере с двоичной системой счисления, является степенью двойки и будет состоять из старших битов правой половины произведения .

Среди преимуществ этих двух методов стоит отметь, что они выгодно используют то, что реальные ключи неслучайны, например в том случае если ключи представляют собой арифметическую прогрессию (допустим последовательность имён «ИМЯ1», «ИМЯ2», «ИМЯ3»). Мультипликативный метод отобразит арифметическую прогрессию в приближенно арифметическую прогрессию различных хеш-значений, что уменьшает количество коллизий по сравнению со случайной ситуацией.

Одной из вариаций данного метода является хеширование Фибоначчи , основанное на свойствах золотого сечения . В качестве здесь выбирается ближайшее к целое число, взаимно простое с

Хеширование строк переменной длины

Вышеизложенные методы применимы и в том случае, если нам необходимо рассматривать ключи, состоящие из нескольких слов или ключи переменной длины. Например можно скомбинировать слова в одно при помощи сложения по модулю или операции «исключающее или». Одним из алгоритмов, работающих по такому принципу является хеш-функция Пирсона.

Универсальное хеширование

Универсальным хешированием (англ. Universal hashing ) называется хеширование, при котором используется не одна конкретная хеш-функция, а происходит выбор из заданного семейства по случайному алгоритму . Использование универсального хеширования обычно обеспечивает низкое число коллизий. Универсальное хеширование имеет множество применений, например, в реализации хеш-таблиц и криптографии.

Описание

Предположим, что мы хотим отобразить ключи из пространства в числа . На входе алгоритм получает некоторый набор данных и размерностью , причем неизвестный заранее. Как правило целью хеширования является получение наименьшего числа коллизий , чего трудно добиться используя какую-то определенную хеш-функцию.

В качестве решения такой проблемы можно выбирать функцию случайным образом из определенного набора, называемого универсальным семейством .

Методы борьбы с коллизиями

Как уже говорилось выше, коллизией (иногда конфликтом или столкновением) хеш-функции называются такие два входных блока данных, которые дают одинаковые хеш-коды.

В хеш-таблицах

Большинство первых работ описывающих хеширование было посвящено методам борьбы с коллизиями в хеш-таблицах, так как хеш-функции применялись для поиска в больших файлах. Существует два основных метода используемых в хеш-таблицах:

  1. Метод цепочек(метод прямого связывания)
  2. Метод открытой адресации

Первый метод заключается в поддержке связных списков , по одному на каждое значение хеш-функции. В списке хранятся ключи, дающие одинаковое значение хеш-кодов. В общем случае, если мы имеем ключей и списков, средний размер списка будет и хеширование приведет к уменьшению среднего количества работы по сравнению с последовательным поиском примерно в раз.

Второй метод состоит в том, что в массиве таблицы хранятся пары ключ-значение. Таким образом мы полностью отказываемся от ссылок и просто просматриваем записи таблицы, пока не найдем нужный ключ или пустую позицию. Последовательность, в которой просматриваются ячейки таблицы называется последовательностью проб.

Криптографическая соль

Существует несколько способов для защиты от подделки паролей и подписей , работающих даже в том случае, если криптоаналитику известны способы построения коллизий для используемой хеш-функции. Одним из таких методов является добавление криптографической соли (строки случайных данных) к входным данным (иногда «соль» добавляется и к хеш-коду), что значительно затрудняет анализ итоговых хеш-таблиц. Данный метод, к примеру, используется для хранения паролей в UNIX-подобных операционных системах .

Применение хеш-функций

Криптографические хеш-функции

Среди множества существующих хеш-функций принято выделять криптографически стойкие , применяемые в криптографии , так как на них накладываются дополнительные требования. Для того чтобы хеш-функция считалась криптографически стойкой, она должна удовлетворять трем основным требованиям, на которых основано большинство применений хеш-функций в криптографии:

Данные требования не являются независимыми:

  • Обратимая функция нестойка к коллизиям первого и второго рода.
  • Функция, нестойкая к коллизиям первого рода, нестойка к коллизиям второго рода; обратное неверно.

Следует отметить, что не доказано существование необратимых хеш-функций, для которых вычисление какого-либо прообраза заданного значения хеш-функции теоретически невозможно. Обычно нахождение обратного значения является лишь вычислительно сложной задачей.

Хеширование часто используется в алгоритмах электронно-цифровой подписи, где шифруется не само сообщение, а его хеш-код, что уменьшает время вычисления, а также повышает криптостойкость. Также в большинстве случаев, вместо паролей хранятся значения их хеш-кодов.

Контрольные суммы

Несложные, крайне быстрые и легко осуществимые аппаратные алгоритмы, используемые для защиты от непреднамеренных искажений, в том числе ошибок аппаратуры. С точки зрения математики является хеш-функцией, которая вычисляет контрольный код, применяемый для обнаружения ошибок при передаче и хранении информации

По скорости вычисления в десятки и сотни раз быстрее, чем криптографические хеш-функции, и значительно проще в аппаратном исполнении.

Платой за столь высокую скорость является отсутствие криптостойкости - лёгкая возможность подогнать сообщение под заранее известную сумму. Также обычно разрядность контрольных сумм (типичное число: 32 бита) ниже, чем криптографических хешей (типичные числа: 128, 160 и 256 бит), что означает возможность возникновения непреднамеренных коллизий.

Простейшим случаем такого алгоритма является деление сообщения на 32- или 16- битные слова и их суммирование, что применяется, например, в TCP/IP .

Как правило, к такому алгоритму предъявляются требования отслеживания типичных аппаратных ошибок, таких, как несколько подряд идущих ошибочных бит до заданной длины. Семейство алгоритмов т. н. «циклических избыточных кодов » удовлетворяет этим требованиям. К ним относится, например, CRC32 , применяемый в устройствах Ethernet и в формате сжатия данных ZIP .

Контрольная сумма, например, может быть передана по каналу связи вместе с основным текстом. На приёмном конце, контрольная сумма может быть рассчитана заново и её можно сравнить с переданным значением. Если будет обнаружено расхождение, то это значит, что при передаче возникли искажения и можно запросить повтор.

Бытовым аналогом хеширования в данном случае может служить приём, когда при переездах в памяти держат количество мест багажа. Тогда для проверки не нужно вспоминать про каждый чемодан, а достаточно их посчитать. Совпадение будет означать, что ни один чемодан не потерян. То есть, количество мест багажа является его хеш-кодом. Данный метод легко дополнить до защиты от фальсификации передаваемой информации (метод MAC). В этом случае хеширование производится криптостойкой функцией над сообщением, объединенным с секретным ключом, известным только отправителю и получателю сообщения. Таким образом, криптоаналитик не сможет восстановить код по перехваченному сообщению и значению хеш-функции, то есть, не сможет подделать сообщение (См. имитозащита).

Геометрическое хеширование

Геометрическое хеширование (англ. Geometric hashing ) – широко применяемый в компьтерной графике и вычислительной геометрии метод для решения задач на плоскости или в трёхмерном пространстве, например для нахождения ближайших пар в множестве точек или для поиска одинаковых изображений. Хеш-функция в данном методе обычно получает на вход какое-либо метрическое пространство и разделяет его, создавая сетку из клеток. Таблица в данном случае является массивом с двумя или более индексами и называется файл сетки(англ. Grid file ). Геометрическое хеширование также применяется в телекоммуникациях при работе с многомерными сигналами.

Ускорение поиска данных

Хеш-таблицей называется структура данных, позволяющая хранить пары вида (ключ,хеш-код) и поддерживающая операции поиска, вставки и удаления элемента. Задачей хеш-таблиц является ускорение поиска, например, при записи текстовых полей в базе данных может рассчитываться их хеш код и данные могут помещаться в раздел, соответствующий этому хеш-коду. Тогда при поиске данных надо будет сначала вычислить хеш-код текста и сразу станет известно, в каком разделе их надо искать, то есть, искать надо будет не по всей базе, а только по одному её разделу (это сильно ускоряет поиск).

Бытовым аналогом хеширования в данном случае может служить помещение слов в словаре по алфавиту. Первая буква слова является его хеш-кодом, и при поиске мы просматриваем не весь словарь, а только нужную букву.

Примечания

Литература

  • Брюс Шнайер "Прикладная криптография. Протоколы, алгоритмы, исходные тексты на языке Си". - М .: Триумф, 2002. -

(иногда хэширование, англ. hashing) - преобразование входного массива данных произвольной длины в выходную битовую строку фиксированной длины. Такие преобразования также называются хеш-функциями или функциями свёртки, а их результаты называют хешем, хеш-кодом или дайджестом сообщения (англ. message digest).

Хеширование применяется для сравнения данных: если у двух массивов хеш-коды разные, массивы гарантированно различаются; если одинаковые - массивы, скорее всего, одинаковы. В общем случае однозначного соответствия между исходными данными и хеш-кодом нет в силу того, что количество значений хеш-функций меньше чем вариантов входного массива; существует множество массивов, дающих одинаковые хеш-коды - так называемые коллизии. Вероятность возникновения коллизий играет немаловажную роль в оценке качества хеш-функций.

Существует множество алгоритмов хеширования с различными характеристиками (разрядность, вычислительная сложность, криптостойкость и т. п.). Выбор той или иной хеш-функции определяется спецификой решаемой задачи. Простейшими примерами хеш-функций могут служить контрольная сумма или CRC.

Контрольные суммы

Несложные, крайне быстрые и легко реализуемые аппаратные алгоритмы, используемые для защиты от непреднамеренных искажений, в том числе ошибок аппаратуры.

По скорости вычисления в десятки и сотни раз быстрее, чем криптографические хеш-функции, и значительно проще в аппаратной реализации.

Платой за столь высокую скорость является отсутствие криптостойкости - лёгкая возможность подогнать сообщение под заранее известную сумму. Также обычно разрядность контрольных сумм (типичное число: 32 бита) ниже, чем криптографических хешей (типичные числа: 128, 160 и 256 бит), что означает возможность возникновения непреднамеренных коллизий. Простейшим случаем такого алгоритма является деление сообщения на 32- или 16- битные слова и их суммирование, что применяется, например, в TCP/IP.

Как правило, к такому алгоритму предъявляются требования отслеживания типичных аппаратных ошибок, таких, как несколько подряд идущих ошибочных бит до заданной длины. Семейство алгоритмов т. н. «циклических избыточных кодов» удовлетворяет этим требованиям. К ним относится, например, CRC32, применяемый в аппаратуре Ethernet и в формате упакованных файлов ZIP.

Криптографические хеш-функции

Среди множества существующих хеш-функций принято выделять криптографически стойкие, применяемые в криптографии. Для того, чтобы хеш-функция H считалась криптографически стойкой, она должна удовлетворять трем основным требованиям, на которых основано большинство применений хеш-функций в криптографии:
  • Необратимость: для заданного значения хеш-функции m должно быть вычислительно неосуществимо найти блок данных X , для которого H(X) = m .

  • Стойкость к коллизиям первого рода: для заданного сообщения M должно быть вычислительно неосуществимо подобрать другое сообщение N , для которого H(N) = H(M) .

  • Стойкость к коллизиям второго рода: должно быть вычислительно неосуществимо подобрать пару сообщений (M, M") , имеющих одинаковый хеш.
Данные требования не являются независимыми:
  • Обратимая функция нестойка к коллизиям первого и второго рода.

  • Функция, нестойкая к коллизиям первого рода, нестойка к коллизиям второго рода; обратное неверно.
Следует отметить, что не доказано существование необратимых хеш-функций, для которых вычисление какого-либо прообраза заданного значения хеш-функции теоретически невозможно. Обычно нахождение обратного значения является лишь вычислительно сложной задачей.

Атака «дней рождения» позволяет находить коллизии для хеш-функции с длиной значений n битов в среднем за примерно 2 n/2 вычислений хеш-функции. Поэтому n -битная хеш-функция считается криптостойкой, если вычислительная сложность нахождения коллизий для неё близка к 2 n/2 .

Для криптографических хеш-функций также важно, чтобы при малейшем изменении аргумента значение функции сильно изменялось (лавинный эффект). В частности, значение хеша не должно давать утечки информации даже об отдельных битах аргумента. Это требование является залогом криптостойкости алгоритмов хеширования, хеширующих пользовательский пароль для получения ключа

Применение хеш-функций

Хеш-функции также используются в некоторых структурах данных - хеш-таблицаx, фильтрах Блума и декартовых деревьях. Требования к хеш-функции в этом случае другие:
  • хорошая перемешиваемость данных
  • быстрый алгоритм вычисления
Сверка данных
В общем случае это применение можно описать, как проверка некоторой информации на идентичность оригиналу, без использования оригинала. Для сверки используется хеш-значение проверяемой информации. Различают два основных направления этого применения:
  1. Проверка на наличие ошибок - Например, контрольная сумма может быть передана по каналу связи вместе с основным текстом. На приёмном конце, контрольная сумма может быть рассчитана заново и её можно сравнить с переданным значением. Если будет обнаружено расхождение, то это значит, что при передаче возникли искажения и можно запросить повтор.

    Бытовым аналогом хеширования в данном случае может служить приём, когда при переездах в памяти держат количество мест багажа. Тогда для проверки не нужно вспоминать про каждый чемодан, а достаточно их посчитать. Совпадение будет означать, что ни один чемодан не потерян. То есть, количество мест багажа является его хеш-кодом. Данный метод легко дополнить до защиты от фальсификации передаваемой информации (метод MAC). В этом случае хеширование производится криптостойкой функцией над сообщением, объединенным с секретным ключом, известным только отправителю и получателю сообщения. Таким образом, криптоаналитик не сможет восстановить код, по перехваченному сообщению и значению хеш-функции, то есть, не сможет подделать сообщение.


  2. Ускорение поиска данных - Например, при записи текстовых полей в базе данных может рассчитываться их хеш код и данные могут помещаться в раздел, соответствующий этому хеш-коду. Тогда при поиске данных надо будет сначала вычислить хеш-код текста и сразу станет известно, в каком разделе их надо искать, то есть, искать надо будет не по всей базе, а только по одному её разделу (это сильно ускоряет поиск).

    Бытовым аналогом хеширования в данном случае может служить помещение слов в словаре по алфавиту. Первая буква слова является его хеш-кодом, и при поиске мы просматриваем не весь словарь, а только нужную букву.

Хеширование (от англ. hashing) - преобразование входных данных произвольной длины в выходную битовую строку фиксированной длины таким образом, чтобы изменение входных данных приводило к непредсказуемому изменению выходных данных. Такие преобразования также называются хеш-функциями или функциями свёртки, а их результаты называют хешем или хеш-кодом.

Задачи хеширования

Проверка парольной фразы

Сегодня опасно хранить пароли на целевых объектах, ведь от туда они могут быть похищены злоумышленниками и использованы в своих целях. Поэтому там хранятся только хеши паролей, которые нельзя обратить и узнать пароль. При проверки же пароля, вводимый пароль подвергается хешированию и сравниваются хеш-значения.

Самые распространенные алгоритмы: MD5 (MD4, MD2), SHA1.

Ускорение поиска данных

Например, в базе данных, при записи текстовых полей может расчитываться их хеш-код и записываться в отдельное поле. Тогда при поиске данных нужно будет вычислить хеш-код данных и искать уже не по всей базе, а только по одному ее разделу.

Вычисление контрольной суммы .

Для проверки пакета на наличие ошибок часто используется контрольная сумма, которая передается вместе с сообщением. На приемном конце, при получении сообщения еще раз вычисляется контрольная сумма и если значение совпадает с переданным значит сообщение передано без ошибок.

Вычисление электронной цифровой подписи .

Электронная цифровая подпись используется для защиты электронного документа от подделки. Получается в результате преобразования информации с использованием закрытого ключа, позволяет идентифицировать владельца ключа подписи и установить отсутствие искажения информации в электронном документе

Требования, предъявляемые к алгоритму хэширования

    Хэш-функция может быть применена к аргументу любого размера.

    Выходное значение имеет фиксированный размер.

    Скорость вычисления хэш-функции должна быть такой, что скорость формирования цифровой подписи при использовании хэш-функции должна существенно превышать скорость формирования цифровой подписи при использовании самого сообщения.

    Хэш-функция является односторонней функцией. Таким образом, для любого m с вычислительной точки зрения невозможно найти такой открытый текст X, h (X) = m

    Вероятность того, что значения хэш-функций двух различных документов (вне зависимости от их длин) совпадут, должна быть ничтожно мала.

Алгоритм MD 5

MD5 (Message Digest 5) – алгоритм хеширования, разработанный Р. Ривестом из Массачусетского технологического института (MIT) в 1991 году

Подробное описание алгоритма может быть найдено в RFC 1321.

На выходе алгоритм выдает 128-битный дайджест(отпечаток) сообщения. Длина исходного сообщения может быть любой.

Алгоритм MD5 уязвим к некоторым атакам, например возможно создание двух сообщений с одинаковой хеш-суммой, поэтому его использование не рекомендуется в новых проектах.

Алгоритм SHA -1

Алгоритм безопасного хэширования SHA (Secure Hash Algorithm) принят в качестве стандарта США в 1992 году.

Описан в RFC 3174.

Предназначен для использования совместно с алгоритмом цифровой подписи. При вводе открытого текста алгоритм вырабатывает 160-битовое выходное сообщение (digest (“дайджест”), краткое изложение), используемое при выработке цифровой подписи.

Алгоритм хэширования SНА назван безопасным, потому что он спроектирован таким образом, чтобы было вычислительно невозможно восстановить сообщение, соответствующее данному дайджесту, а также найти два различных сообщения, которые дадут одинаковый дайджест.

Отличия алгоритмов SHA и MD5 состоят в следующем:

1. SHA выдает 160-битовое хэш-значение и более устойчив к атакам полного перебора чем MD5, формирующий 128-битовое хэш-значение.

2. Сжимающая функция SHA включает 80 раундов, а не 64 как в MD5.

3. Усложнен процесс перемешивания.

Алгоритмы семейства SHA -2

Алгоритмы подсемейства SHA -2 , так же как и алгоритм SHA -1 , были разработаны Агентством национальной безопасности США и опубликованы Национальным институтом стандартов и технологий (NIST) в федеральном стандарте обработки информации FIPS PUB 180–2 в августе 2002 года.

Алгоритмы семейства SHA-2 используются в SSL , SSH , S / MIME , DNSSEC , X .509 , PGP , IPSec , при передачи файлов по сети (BitTorrent ).

Алгоритмы хэширования

MD5 md5 = new MD5CryptoServiceProvider();

string stringToHash = "Съешь еще этих мягких французских булок да выпей чаю";

byte hash = md5.ComputeHash(Encoding.Unicode.GetBytes(stringToHash));

Console.WriteLine(ByteHelper.ByteArrayToHexString(hash));

string anotherStringToHash = "The quick brown fox jumps over the lazy dog";

HashAlgorithm sha512 = HashAlgorithm.Create("SHA512");

Console.WriteLine(

ByteHelper.ByteArrayToHexString(

sha512.ComputeHash(

Encoding.Unicode.GetBytes(

Как я полагаю, многим известно о том, что с 2007 года Национальный институт стандартов и технологий США (NIST) проводит конкурс на разработку хэш-алгоритма для замены SHA-1, и семейства алгоритмов SHA-2. Однако данная тема, почему-то обделена вниманием на сайте. Собственно это и привело меня к вам. Предлагаю вашему вниманию цикл статей, посвященных хэш-алгоритмам. В этом цикле мы вместе изучим основы хэш-функций, рассмотрим самые именитые хэш-алгоритмы, окунемся в атмосферу конкурса SHA-3 и рассмотрим алгоритмы, претендующие на победу в нем, обязательно их потестируем. Так же по возможности будут рассмотрены российские стандарты хеширования.

О себе

Студент кафедры информационной безопасности.

О хэшировании

В настоящее время практически ни одно приложение криптографии не обходится без использования хэширования.
Хэш-функции – это функции, предназначенные для «сжатия» произвольного сообщения или набора данных, записанных, как правило, в двоичном алфавите, в некоторую битовую комбинацию фиксированной длины, называемую сверткой. Хэш-функции имеют разнообразные применения при проведении статистических экспериментов, при тестировании логических устройств, при построении алгоритмов быстрого поиска и проверки целостности записей в базах данных. Основным требованием к хэш-функциям является равномерность распределения их значений при случайном выборе значений аргумента.
Криптографической хеш-функцией называется всякая хеш-функция, являющаяся криптостойкой, то есть удовлетворяющая ряду требований специфичных для криптографических приложений. В криптографии хэш-функции применяются для решения следующих задач:
- построения систем контроля целостности данных при их передаче или хранении,
- аутентификация источника данных.

Хэш-функцией называется всякая функция h:X -> Y , легко вычислимая и такая, что для любого сообщения M значение h(M) = H (свертка) имеет фиксированную битовую длину. X - множество всех сообщений, Y - множество двоичных векторов фиксированной длины.

Как правило хэш-функции строят на основе так называемых одношаговых сжимающих функций y = f(x 1 , x 2) двух переменных, где x 1 , x 2 и y - двоичные векторы длины m , n и n соответственно, причем n - длина свертки, а m - длина блока сообщения.
Для получения значения h(M) сообщение сначала разбивается на блоки длины m (при этом, если длина сообщения не кратна m то последний блок неким специальным образом дополняется до полного), а затем к полученным блокам M 1 , M 2 ,.., M N применяют следующую последовательную процедуру вычисления свертки:

H o = v,
H i = f(M i ,H i-1), i = 1,.., N,
h(M) = H N

Здесь v - некоторая константа, часто ее называют инициализирующим вектором. Она выбирается
из различных соображений и может представлять собой секретную константу или набор случайных данных (выборку даты и времени, например).
При таком подходе свойства хэш-функции полностью определяются свойствами одношаговой сжимающей функции.

Выделяют два важных вида криптографических хэш-функций - ключевые и бесключевые. Ключевые хэш-функции называют кодами аутентификации сообщений. Они дают возможность без дополнительных средств гарантировать как правильность источника данных, так и целостность данных в системах с доверяющими друг другу пользователями.
Бесключевые хэш-функции называются кодами обнаружения ошибок. Они дают возможность с помощью дополнительных средств (шифрования, например) гарантировать целостность данных. Эти хэш-функции могут применяться в системах как с доверяющими, так и не доверяющими друг другу пользователями.

О статистических свойствах и требованиях

Как я уже говорил основным требованием к хэш-функциям является равномерность распределения их значений при случайном выборе значений аргумента. Для криптографических хеш-функций также важно, чтобы при малейшем изменении аргумента значение функции сильно изменялось. Это называется лавинным эффектом.

К ключевым функциям хэширования предъявляются следующие требования:
- невозможность фабрикации,
- невозможность модификации.

Первое требование означает высокую сложность подбора сообщения с правильным значением свертки. Второе - высокую сложность подбора для заданного сообщения с известным значением свертки другого сообщения с правильным значением свертки.

К бесключевым функциям предъявляют требования:
- однонаправленность,
- устойчивость к коллизиям,
- устойчивость к нахождению второго прообраза.

Под однонаправленностью понимают высокую сложность нахождения сообщения по заданному значению свертки. Следует заметить что на данный момент нет используемых хэш-функций с доказанной однонаправленностью.
Под устойчивостью к коллизиям понимают сложность нахождения пары сообщений с одинаковыми значениями свертки. Обычно именно нахождение способа построения коллизий криптоаналитиками служит первым сигналом устаревания алгоритма и необходимости его скорой замены.
Под устойчивостью к нахождению второго прообраза понимают сложность нахождения второго сообщения с тем же значением свертки для заданного сообщения с известным значением свертки.

Это была теоретическая часть, которая пригодится нам в дальнейшем…

О популярных хэш-алгоритмах

Алгоритмы CRC16/32 - контрольная сумма (не криптографическое преобразование).

Алгоритмы MD2/4/5/6 . Являются творением Рона Райвеста, одного из авторов алгоритма RSA.
Алгоритм MD5 имел некогда большую популярность, но первые предпосылки взлома появились еще в конце девяностых, и сейчас его популярность стремительно падает.
Алгоритм MD6 - очень интересный с конструктивной точки зрения алгоритм. Он выдвигался на конкурс SHA-3, но, к сожалению, авторы не успели довести его до кондиции, и в списке кандидатов, прошедших во второй раунд этот алгоритм отсутствует.

Алгоритмы линейки SHA Широко распространенные сейчас алгоритмы. Идет активный переход от SHA-1 к стандартам версии SHA-2. SHA-2 - собирательное название алгоритмов SHA224, SHA256, SHA384 и SHA512. SHA224 и SHA384 являются по сути аналогами SHA256 и SHA512 соответственно, только после расчета свертки часть информации в ней отбрасывается. Использовать их стоит лишь для обеспечения совместимости с оборудованием старых моделей.

Российский стандарт - ГОСТ 34.11-94 .

В следующей статье

Обзор алгоритмов MD (MD4, MD5, MD6).

Литература

А. П. Алферов, Основы криптографии.

Брюс Шнайер, Прикладная криптография.

В продолжение темы:
Tp-link

Список криптовалют с каждым днем становится все больше. Изучить все электронные монеты просто невозможно. А вот познакомиться с главными игроками рынка под силу каждому. Один...

Новые статьи
/
Популярные